
CPS122 Lecture: The User Interface

Last revised March 1, 2022
Objectives:

1. To introduce the broad field of user interface design
2. To introduce the concept of User Centered Design
3. To introduce a process for user interface design
4. To introduce key concepts concerning accessibility

 Materials:
5.

1. Lethbridge/Langanere description of British Midlands flight 92 and USS
Vincennes incident

2. Ability to demonstrate help for Mac Set Date
3. Lethbridge/Langaniere ppt slides for §7.4
4. Projectable of Braude figures 3.21-3.24
5. Projectable of Overall GUI design for Library project
6. Projectable of GUI design for Checkout Details in Library project
7. Executable of Library Iteration 1 implemented
8. Library project to demonstrate accessibility

I. Introduction

A. At the outset of our discussion, it is important to again note what we
discussed earlier in the course about different kinds of stakeholders in
a software project. Recall that a stakeholder is anyone who has a
legitimate stake in the outcome of a project.

1. For a typical software project, there are four kinds of stakeholders.
Who are they?

ASK

a) Users - those who will eventually use the software.

1

b) Clients - those who decide to have the software developed, and
pay for doing so.

c) Developers - those who actually produce the software.

d) Development managers - those who oversee the work of the
developers.

2. A common mistake in software projects is to consider the needs of
the clients, but not the needs of the users who will use the
software. (An even worse mistake is to ignore both in favor of the
needs of the developers!)

B. One of the most important factors in determining the success of many
software systems is the quality of its user interface - the way in which
human users interact with the program.

1. This may be:

a) A command-line interface.

b) A graphical-user interface

c) A set of web pages

d) A mobile device such as a smart phone or tablet

e) Various sorts of game devices - Wii, VR helmets etc.

f) A special hardware interface (e.g. for an embedded system,
such as our ATM example.)

g) In some cases, of course, the user interface may not seem to be
an issue at all, because the program does not interact with users
directly (e.g. network protocol software that interacts only with

2

other software). Even so, there is typically some kind of user
interface involved for adjusting parameters, etc, and the
functionality of the software eventually impacts the
functionality of the software that users do interact with.

2. The quality of the user interface impacts a program’s success in at
least two ways.

a) Users prefer (and will purchase) programs that have a user
interface that they perceive as best meeting their needs.

b) In some cases, human safety or even lives may be at stake -
poorly-designed UI’s have led, in some cases, to people dying.
Examples?

ASK

(1)British Midlands flight 92 - READ DESCRIPTION FROM
page 258 in Lethbridge/Langaniere

(2)Shooting down of an Iranian passenger plane by the USS
Vincennes - READ DESCRIPTION FROM page 281 in
Lethbridge/Langaniere

C. The topic of UI design is a huge one.

1. A focus of graduate-level programs, including PhD in CS
programs

2. A broad field, encompassing several fields in addition to CS,
including

a) Psychology

b) Library/Information Science

c) Education

3

d) Communications

e) Technical Writing / English

f) Art

3. I certainly wouldn’t claim much expertise in this area.

D. In this lecture, I want to deal briefly with four issues:

1. The notion of user-centered design (UCD)

2. Fundamental concepts of user interface design

3. The process of designing a user interface

4. Considerations for making a user interface accessible to
individuals with sight, hearing, or physical handicaps.

II. User-Centered Design (UCD)

A. There is a growing awareness in the software industry of the need to
very consciously think about the eventual users of the software - i.e.
not just the client who is paying for it, but the people who will
actually use if (who may be employees or customers of the client.)
This leads to a key concept called User-Centered Design.

B. One key notion in UCD is involving users in the design process.

1. Some software development approaches uses teams that includes
users as well as developers.

2. Even if this is not done, there needs to be an early focus on users,
testing with actual uses, and the use of iterative design.

4

C. Another key notion is bearing in mind user characteristics in the
design process. What are the kinds of things we should bear in mind
concerning potential users of a software system?

ASK

1. Their goals - why are they using the software?

2. Their demographics

a) age

b) education level

c) language

d) culture

(1)left-to-right vs right-to-left reading/writing

(2)date and time formats (note European dd/mm/yy vs
American mm/dd/yy)

(3)Weights and measures (metric vs English system)

(4)Significance of colors

A special challenge arises when a UI is being designed to be
used by people of diverse cultures - e.g. a system to be used
internationally.

3. What is their knowledge of the software domain? (Employees of a
client are typically more knowledgeable in this regard than
customers - but not necessarily if the software is controlling a
complex system.)

5

4. What is their knowledge of using computers?

5. What is their physical ability? Designing software systems to be
easily usable by people with physical handicaps is important:

a) Visual disabilities, including blindness, need for large fonts,
color blindness.

b) Hearing disabilities

c) Physical disabilities - e.g.:

(1)Need for alternatives to using a mouse.

(2)Issues related to the height of a device such as a ticket
dispenser or a gas pump affecting usability by a person in a
wheelchair.

D. A very key idea in UCD is the notion of a use case.

1. As you recall, use cases are structured in terms of user goals - i.e.
the are potential answers you would get if you asked a system user
“what are you trying accomplish?”

2. In developing a system incrementally, it is good practice to first
focus on the “central” use cases - i.e. the ones that represent the
reason why the system exists - i.e. the ones that users will need
most often.

Note that we did this for the course project - checking out,
renewing, and returning items are clearly the central cases for
library. (We included the copy status report to make initial testing
possible.)

6

III.Fundamental Concepts of UI Design

A. One key concept is recognizing that a good UI has two properties
which can conflict with one another: Usability and Utility

1. Definitions

a) Usability has to do with the ease of using the software.

b) Utility has to do with the functionality of the UI - what can the
user do with the software?

2. What are some key aspects of usability?

ASK

a) Learnability - including provision for both novice and expert
users

b) Efficiency of use (not the efficiency of the software - but the
amount of work a user must go through to use the software in
terms of selecting options, responding to modal dialogues, etc.)

c) Effectiveness of error prevention / detection / correction

d) Acceptability - do users like to use the system?

3. Why are usability and utility sometimes in conflict with one another?

ASK

4. How might this be addressed without compromising one or the
other?

ASK

7

a) One approach is to provide different modes of operation (e.g.
“novice mode” and “expert mode”)

b) Another is to provide different ways of performing the same
function (e.g. making it possible to select a given function via a
menu, a toolbar, or a hot key)

Example: You have seen this in NetBeans

c) The software may include a help facility accessible via a help
facility that has hot links to the portion of the system that
actually does the operation.

Example: Demo Mac Help “Set Date” - then follow link to
open date and time preferences

B. Interaction styles

There are several different styles of interaction between a user and a
UI. (A given UI may incorporate more than one of these)

1. Direct manipulation (drag and drop)

2. Menu selection

3. Form fill-in

4. Command language (command line)

5. Natural language

C. In general, a UI is easier to learn if it follows established conventions.
This is particularly true with GUI applications that use menu selection
as at least part of their UI - as many do

8

1. Menu structures generally follow certain conventions that are so
well established that we almost take them for granted, for
example:

a) Most applications have a File menu as their first menu. This is
the standard way of specifying file-related operations, including
print and quit. (Even if there is nothing else that makes sense
in a file menu, quit is still normally there.)

b) Likewise, most applications have an Edit menu as their second
menu.

(1)If it is meaningful to let the user undo an action, that will
normally be the first option in the Edit menu.

(2)If it is meaningful to include “cut and paste” in the UI, then
the Edit menu with these options is needed.

c) Many applications include a Help menu, which is generally the
last menu.

d) Normally, the program should display just one window on the
screen (to avoid confusing the user). The exception would be a
“document-centric” program that lets the user work on multiple
documents at once - in which case the program will typically
have one window per document, and a Window menu that
includes the option of selecting different windows.
Traditionally, this comes just before the Help menu.

e) Other examples?

ASK

9

2. Often, menus will have keyboard shortcuts. There are certain
traditions related to these - e.g. the shortcut “S” is normally used
for Save, “O” for open, “W” for close, “C” for copy, “V” for paste,
“X” for cut, and “Z” for undo.

3. Adhering to standard structures like these wherever possible
makes learning a new program much easier!

D. In the world of UI design, there are some key terms which you should
be familiar with

1. Conceptual model - the mental model the user has of the problem
being addressed.

It is helpful to build the design around something that is already
familiar to the user - e.g.

a) Word-processing programs give the user a view that looks like
what the final document will look like, and allow direct
manipulations that correspond to the way a user might edit a
paper document. (Not so important now that almost everyone
is familiar with using a word processor, but much more of an
issue when people were first moving from paper markup to
word-processing.)

b) The interface for a bill paying program may use the model of a
bank check which is likely already familiar to the user.

2. Dialogue (as distinct from “dialog box”)

The interaction between the user and the system

3. Control or “widget”

A visible UI component - menu, button, etc.

10

4. Affordance

The set of operations the user can do at a given point in time. UI
designers would say “A button affords clicking”

5. State

At any given point in time, what the user sees and can do (the set
of widgets and the affordance at some point in the dialogue)

6. Mode, modal dialog

A state in which the affordance is restricted to a limited set of
options. A modal dialog is a dialog box that requires a user to
“satisfy” it before doing anything else. As a general rule, modes
and modal dialogs should be minimized, but are sometimes useful.

a) Example: ASK

“File save” and “Print” dialogs are often modal - once the user
has decided to save or print a file, it makes little sense to allow
further changes until the action is complete.

b) Note that modal dialog boxes often have a “Cancel” to allow
the user to get out of the mode without actually doing anything.
Forgetting to include this can produce a UI that is really
frustrating!

7. Feedback

The response from the system to an action performed by the user

8. Encoding Technique

The way information is presented to a user - can be audibly,
visually, or both

11

a) Note that great care needs to be used in selecting encoding
techniques to allow for physical handicaps, to preserve privacy,
and to avoid annoying users.

b) Where possible, it is desirable to encode key information in
more than one way to accommodate diverse needs.

E. Finally, we should note that there are many principles of good UI
design.

1. Quick-check question “i” from book

2. One text gives 12 usability principles, plus an illustration of using
them to improve a defective GUI.

PROJECT/GO-OVER Lethbridge/Langaniere powerpoints for
§7.4

3. Another writer gives a more pointed set, and another illustration.

PROJECT/GO-OVER Braude figures 3.21-3.24

4. Schneiderman gives what he calls "The Eight Golden Rules of
Interface Design"

a) Strive for consistency

b) Cater to universal accessibility

c) Offer informative feedback

Example: progress bars for time-consuming actions

d) Design dialogues to yield closure

12

e) Prevent errors

f) Permit easy reversal of actions

Example: the ubiquitous do/undo facility. We discussed a
design pattern that supports this. What was it?

ASK

Command

g) Support internal locus of control. Schneiderman describes this
this way: “Experienced users strongly desire the sense that they
are in charge of the interface and that the interface responds to
their actions. They don't want surprises or changes in familiar
behavior ...”

Counterexample: ASK (for me, it's Word!)

h) Reduce short-term memory load

Counterexample: I have several credit cards that I pay online.
Most show me what my balance due is on the same screen as
the one I use to setup a payment. But one shows me the
balance on one screen and then uses another screen for
payment setup, so I have to remember the balance from one
screen to the next!

13

IV.The Process of Designing a User Interface

A. This will not be an attempt to give a detailed process for designing a
UI. Rather, we will note some tools that can be helpful

B. Before designing a UI, it is important to think about the conceptual
model that users will bring to the system; the UI should be designed so
that it is as close as possible to the mental model the user will have.

C. A good starting place for the design of a UI may be the use case
model for the system.

1. Obviously, the UI must make provision for each use case

2. If the use cases are simple, it may be desirable to associate either a
button or a menu option with each use case.

Note: Some operations - such as opening, saving, or creating a file
- are traditionally done using options in the File menu. Other
operations may be better associated with buttons

3. Often, a tool bar tool may also be provided to initiate a frequently-
used use case - in addition to a menu option or button.

4. If the use cases involve more complex operations, it makes sense
to allocate a screen (or series of screens) to each. In this case, a
button or menu option is typically used to initiate the operation.

5. Often, it is meaningful to group use cases into groups of closely-
related operations, which then might have a common starting
point (e.g. individual panes within a tabbed pane, as in iteration 2
of the library project you are working on)

D. Often, a state diagram can be used as a design tool.

14

1. The states correspond to the different visible states of the GUI - i.e. what
screen etc. is being displayed and what buttons/menus are active.

2. The transitions correspond to the various user gestures - i.e.
options the user may choose.

3. As an example, we'll discuss the state diagrams included in the
starter code description for the library project.

a) First, this is the overall structure of the GUI. PROJECT

15

Patron 
Details

Book 
Details

DVD 
Details

Checkout 
Details

Checkout

Collection

Patrons

Status

Renew

Return

Date

(Main)

These three are
added during
Iteration 2

b) Second, this is the GUI for the Checkout Details Card

PROJECT

4. Observe:

a) Each state would correspond to a single screen - or a state of a
screen (with certain operations enabled and others not.)

b) Transitions between states correspond to user actions such as
clicking a button.

The UI should be designed so that state transitions that would
lead to problems are not possible.

16

DEMONSTRATION: Library GUI - use executable in Project
Software / Library Iteration 1 mine

c) Check out Tab

(1)Bad Patron phone number (type “bad”) entered - error
message and stays in same state

(2)Valid Patron phone number entered (type 1) - goes to check
out details card.

d) Check out details card - no copies shown

(1)Bad Item call number (type “bad”) entered - error message
and stays in same state

(2)Valid item ID (type call QA and copy 1) - transitions to
details card - one or more copies shown - none selected -

e) Check out details card - one or more copies shown - none
selected or one selected

(1)Possible to add more copies (demonstrate both valid and
invalid) [bad, QA 1 again, PN 1]

(2)Remove copy (possible only if a copy is selected) - Show
alternate transitions with guards

(a) Check out details card - no copies shown if one was
shown

(b) Check out details card - one or more copies shown if
more than one was shown

17

(3)Clear all copies - transitions to Check out details card no
copies shown

(4)Checkout all copies - transitions to Check out Tab

(5)Cancel - transitions to Check out Tab

E. The quality of the UI can be measured be empirical testing with
actual users (or people having similar characteristics - in most cases,
not developers!). In the book I alluded to earlier, Schneiderman lists
several areas that can be looked at, and that can also be used to
compare different ways of structuring a UI:

1. Time to learn: how long does it take a typical user to learn to use
the UI well enough to start accomplishing goals?

2. Speed of performance: how quickly can a user accomplish
benchmark tasks?

Counterexample: my.gordon course approvals!

3. Rate of errors by user: How many and what kinds of errors do
people make in carrying out benchmark tasks?

Note that, in the case of errors that are not easily reversible, the UI
might incorporate features that reduce the likelihood of an error -
e.g. the dialogs that often pop up in UI's before someone/thing is
deleted if this cannot easily be reversed.

4. Retention over time: How well do users retain their knowledge of
how to use the UI over a day, a week, or even a year?

5. Subjective satisfaction: Do users actually enjoy using the UI?

18

V. Accessibility

A. With a bit of forethought, it is possible to ensure that the user
interface for a given program is accessible to users with widely
varying physical abilities.

B. This also turns out to be an important consideration for legal and
marketability reasons.

C. Some things one can do to promote accessibility.

1. Frankly, this is a very big topic that I’m only beginning to learn
about.

2. Modern operating systems often incorporate facilities to facilitate
accessibility. I will use Universal Access in Mac OS as an
example because I am most familiar with it, but Windows and the
Linux Gnome project have similar capabilities.

Walk through Accessibility System Preference on Mac, discussing
each capability

3. However, it is important for software to be developed to facilitate
using this kind of support support

D. Many people depend on keyboard navigation via the tab and arrow
keys instead of point and click with a mouse, for either visual reasons
or due to inability to manipulate a mouse.

DEMONSTRATE tabbing and voice over in the Library project -
checkout details. Note how only enabled components are included.

19

1. Tabbing through components is tied to the concept of keyboard
focus. The component that has the keyboard focus is the one that
receives keyboard input. (This is why you may have to select a
text field in order to type in it.)

a) Each window displayed on the screen can have a component
that is the focus owner for that window.

b) At any given time, there is only one window that is the
focussed (front) window, and its focus owner is the focus
owner for the whole system.

c) However, it is possible for a window not to have a focus owner.
In that case, when that window is the front window no
component has the keyboard focus.

2. Within any given window, a “focus cycle” is the sequence of
components that receive the focus as one tabs around a window.

a) In Java Swing, a default focus cycle is established for a
container, typically based on the order in which components are
displayed (e.g. the default focus cycle for a container with a
BorderLayout is top, left, center, right, bottom)

b) It is also possible to customize the focus cycle for container.

3. One thing that is very important is to ensure that the focus is
always owned by some component in each window.

In the case of whose contents can change (like the tabbed pane
used for the Library project), it is important that focus be given to
some component in a given pane when that pane is made the
visible one. (This is accomplished by requestFocus() in the
formComponentShown() method - which should actually be
requestFocusInWindow()!)

20

4. When a window has many focusable components, it may be
desirable to use panels within the window to create groupings,
each with its own focus cycle. In this case, the overall focus cycle
for the window involves the individual panels, and one can go
down into the focus cycle of the individual panels.

E. Assistive technologies exist to convert visual displays into spoken
text (screen readers) or braille. For these to succeed, components
need to be able to furnish information about themselves to the
assistive device.

1. Assistive technologies depend on the notion of screen focus,
making information available about the component that currently
has focus. (Hence, if no component has the focus at some point in
time, the assistive technology is useless.)

2. In Java swing, this is handled through accessibility properties.

(SHOW in NetBeans)

a) AccessibleName - often defaulted (e.g. text displayed by a
Button)

b) AccessibleDescription - defaults when there is a tool tip or
there is an associated JLabel whose labelFor property is set.

3. Of course, this is important with other software systems as well.
For example, when using images in a web page, one can include
an alt tag that provides a textual description of the image.

F. When designing a UI, it is important to facilitate access by assistive
technologies:

1. Ensuring focus is always set.

21

2. Avoiding use of encodings for which there are no alternatives.
(Example: if color is used to encode information, then the same
information should also be accessible via a textual description; if
sound is used to encode information, then there should be an
available alternative such as a screen flash or text.

3. Ensuring that information can be accessed/entered using mouse
alternatives such as tabbing. (Standard Swing components in Java
support this, but if one creates custom components one may need
to take steps to ensure this.)

22

